HEMODYNAMIC COMPROMISE FROM EXTRINSIC COMPRESSION OF THE HEART DIAGNOSED BY POCUS

Joséphine Cool POCUS conference September 20, 2018

Brief HPI

An 87W w/:

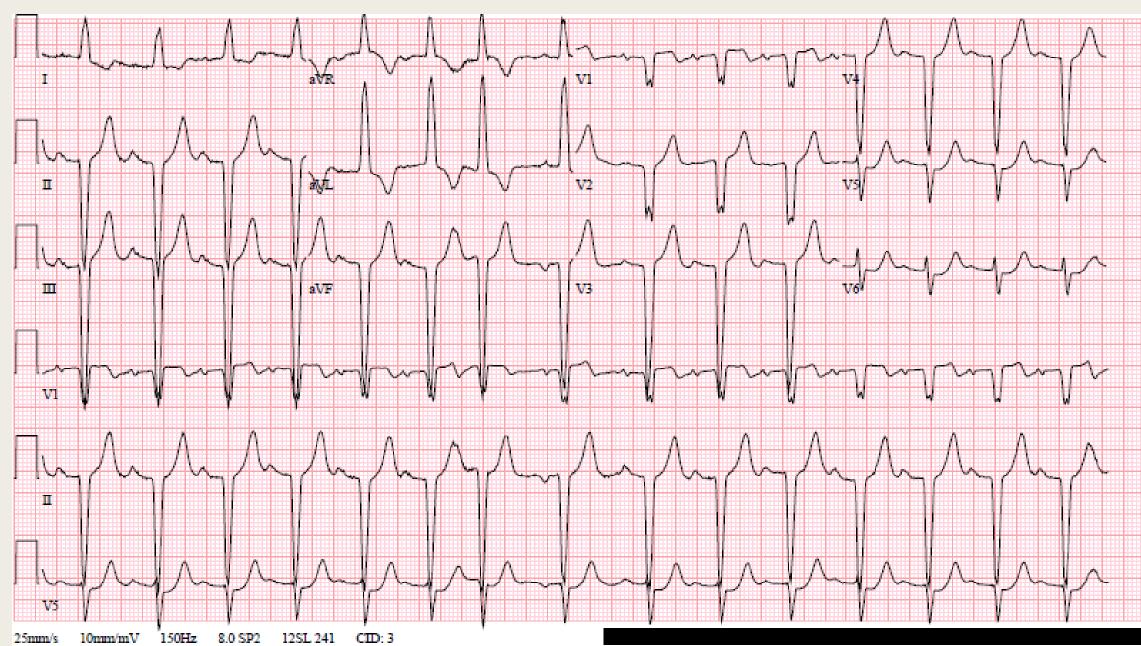
- known CAD including 100% chronic total occlusion of the 1st diagonal
- HTN
- large hiatal hernia

presented with sudden-onset severe substernal chest pain radiating to the back.

The pain started at 10PM the previous night, and had been continuously worsening until she called EMS in the AM.

She received nitroglycerin and aspirin, and was hypotensive to SBP 80s in the ambulance.

Physical Exam


Vital Signs: Afebrile HR 82-111 BP 123/82-144/92 RR 16 Sp02 100%

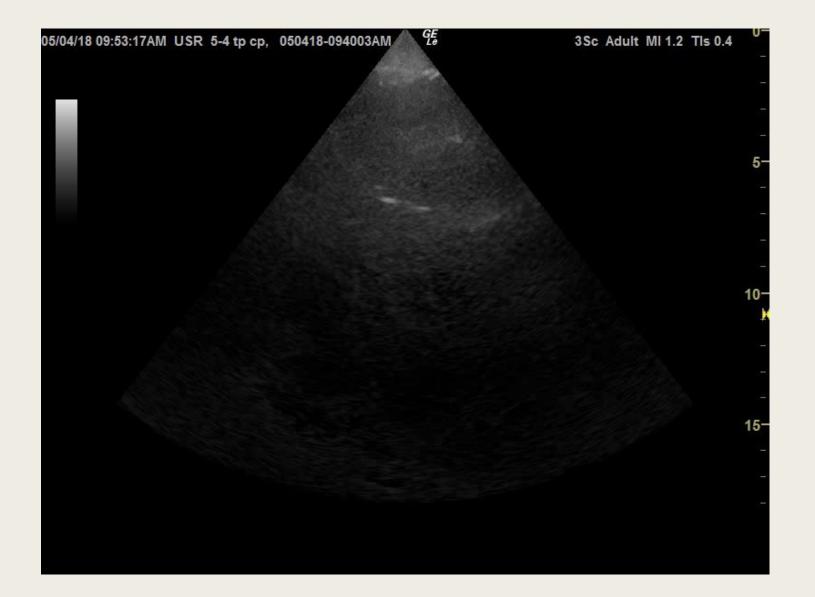
Physical Exam:

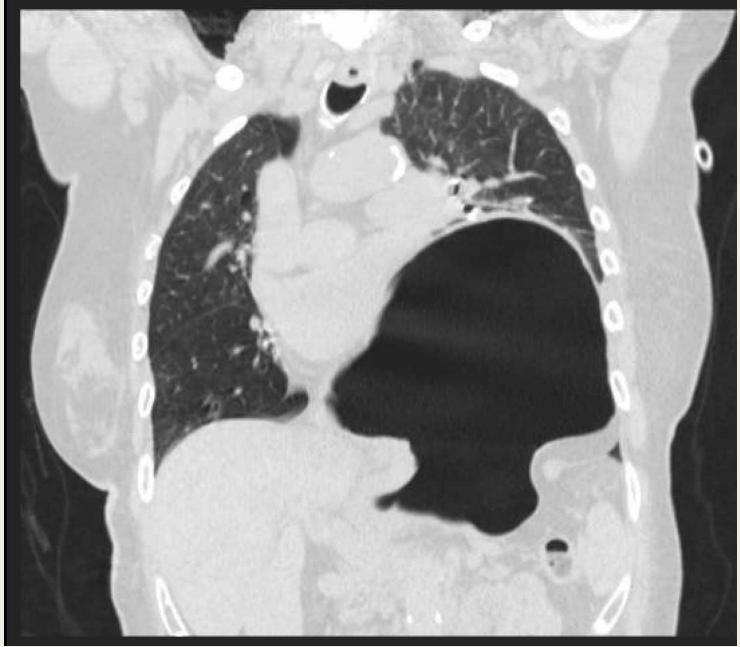
Gen: Elderly woman moaning in pain, AOx3 Neck: no LAD, +JVD to mandible Lungs: CTAB, no c/r/w Heart: Loud systolic murmur heard throughout precordium, but best in RUSB Ext: 2+ pulses, no edema Neuro: AOx3

Labs: troponin 0.04→ 2.12 WBC 14 BNP 83

EKG

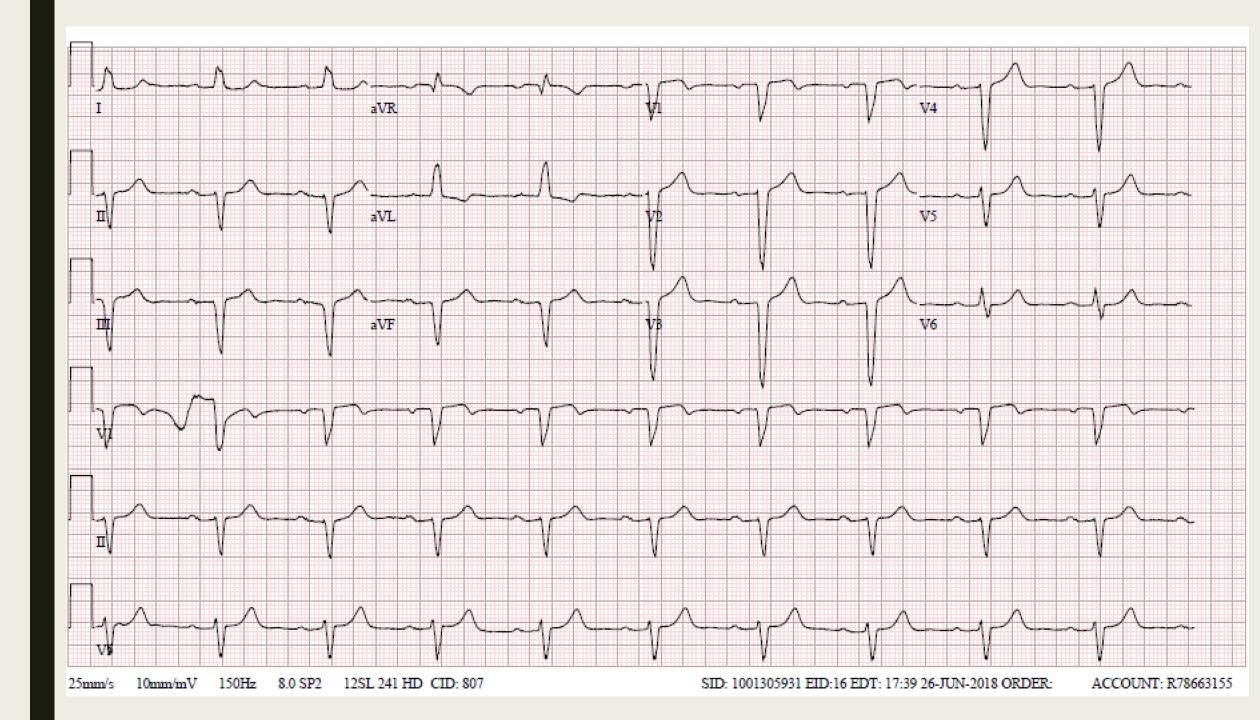
Parasternal long


Parasternal long view


Parasternal short view

Apical four chamber view

CT scan- coronal view


CT scan- transverse view

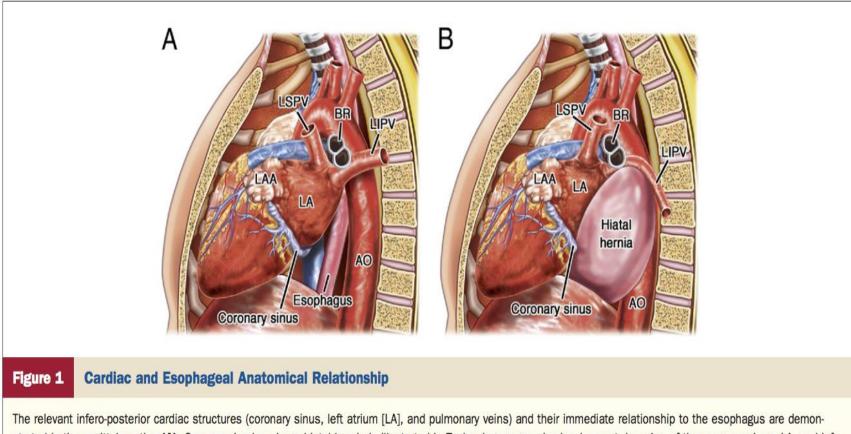
the story continues...

The patient underwent decompression with a nasogastric tube with resolution of her tachycardia, pain and the ST depressions on EKG.

Later in the hospitalization, she underwent surgical repair of her hiatal hernia.

a hiatal hernia can cause hemodynamic compromise

Left Atrial Compression and the Mechanism of Exercise Impairment in Patients With a Large Hiatal Hernia


Christopher Naoum, MBBS,* Gregory L. Falk, MBBS,† Austin C. C. Ng, MBBS, MMED,* Tony Lu, MBBS,‡ Lloyd Ridley, MBBS,‡ Alvin J. Ing, MD,§ Leonard Kritharides, MBBS, PHD,* John Yiannikas, MBBS*

Sydney, New South Wales, Australia

Naoum, Christopher, et al.

"Left atrial compression and the mechanism of exercise impairment in patients with a large hiatal hernia." *Journal of the American College of Cardiology* 58.15 (2011): 1624-1634.

the hiatal hernia is posterior and can compress the left atrium and pulmonary veins

strated in the sagittal section (A). Compression by a large hiatal hernia is illustrated in **B** showing progressive involvement, in order, of the coronary sinus, LA, and inferior pulmonary veins with increasing size of the hernia. AO = aorta; BR = bronchus; LAA = left atrial appendage; LIPV = left inferior pulmonary vein; LSPV = left superior pulmonary vein.

Naoum, Christopher, et al.

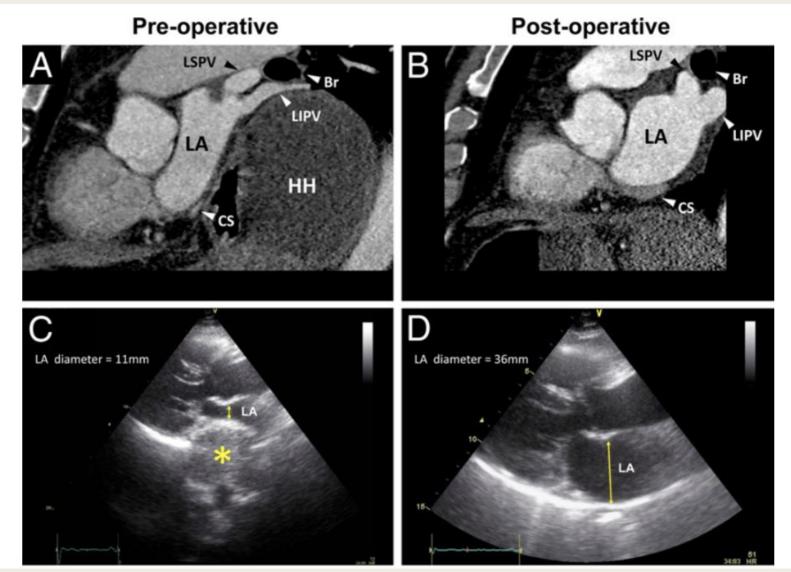
"Left atrial compression and the mechanism of exercise impairment in patients with a large hiatal hernia." *Journal of the American College of Cardiology* 58.15 (2011): 1624-1634.

table 1: many patients with large hiatal hernias had exertional dyspnea or chest pain...

Symptoms

Cardiorespiratory symptoms

Dyspnea	
Exertional	25 (83)
Postural	17 (57)
Postprandial	20 (67)
Cough	7 (23)
Chest pain or pressure (noncardiac)	24 (80)
Angina pectoris	1(3)
Palpitations	7 (23)
Syncope	1(3)
Orthopnea or paroxysmal nocturnal dyspnea	4 (13)
Ankle swelling	4 (13)
Gastrointestinal symptoms	
Heartburn	18 (60)
Regurgitation	17 (57)
Early satiety	24 (80)
Dysphagia	16 (53)

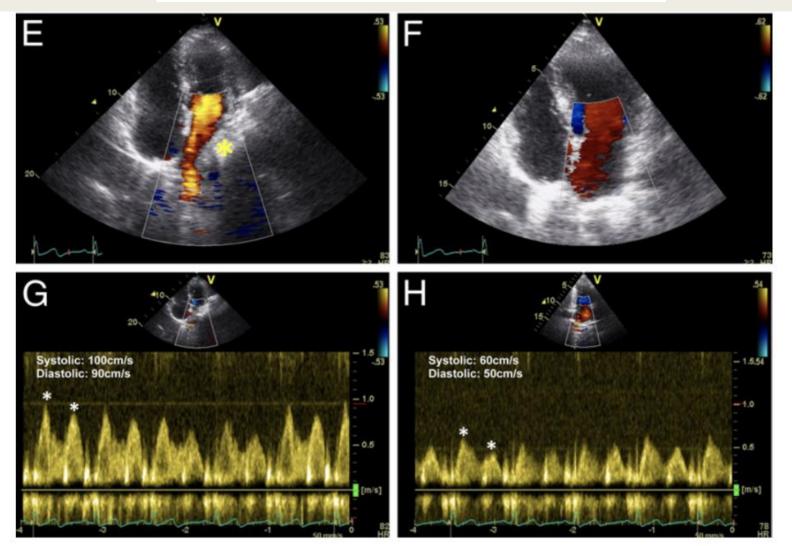

"Left atrial compression and the mechanism of exercise impairment in patients with a large hiatal hernia." *Journal of the American College of Cardiology* 58.15 (2011): 1624-1634.

Naoum, Christopher, et al.

...but did not have significant cardiac and respiratory disease (although 1/3 had elevated RVSP)

New York Heart Association functional class	
1	6 (20)
II	11 (37)
III	11 (37)
IV	2 (7)
Patients with comorbidity	
\geq 1 respiratory conditions on history†	10 (33)
\geq 1 cardiac conditions on history‡	7 (23)
Cardiac function on Doppler-echocardiography	
Left ventricular function	
LVEF, %	61 ± 9
No. of patients with LVEF ${<}40\%$	0 (0)
No. of patients with LVEF between 40% and 55%	9 (30)
No. of patients with inducible myocardial ischemia on stress echocardiography	0 (0)
No. of patients with significant valvular heart disease§	2 (7)
Pulmonary hypertension	
RVSP, mm Hg	32 ± 8
No. of patients with RVSP $>$ 28 mm Hg	10 (33)

the LA diameter increases postoperatively on CT and ultrasound



Naoum, Christopher, et al., 2011

the LA diameter increases post-operatively on CT and ultrasound

Pre-operative

Naoum, Christopher, et al., 2011

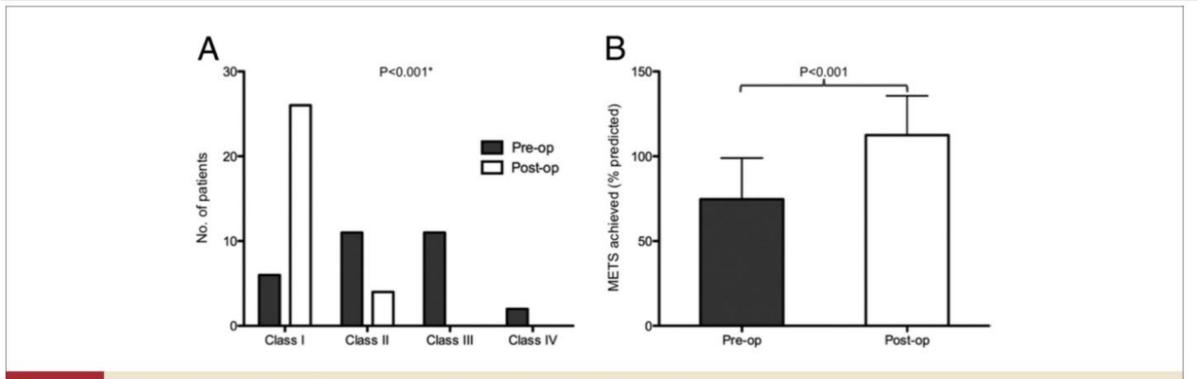

moderate-to-severe LA compression was found in 77% patients with CT and 65% with US

Table 2 Quantitative Cardiac Parameters Before and After Hiatal Hernia Repair Stratified by Left Atrial Compression Severity															
	,	All Patients (n = 30)		No L	A Compression Mild LA Compression (n = 2) (n = 8)		Moderate LA Compression $(n = 13)$			Severe LA Compression $(n = 7)$					
Echocardiography	Pre-Operation	Post-Operation	p Value	Pre-Operation	Post-Operation	p Value	Pre-Operation	Post-Operation	p Value	Pre-Operation	Post-Operation	p Value	Pre-Operation	Post-Operation	p Value
LA diameter, mm	25 ± 8	36 ± 6	< 0.001	31 ± 7	30 ± 8	+	$\textbf{33} \pm \textbf{7}$	37 ± 7	0.13	24 ± 6	36 ± 6	< 0.001	17 ± 5	36 ± 5	<0.001
LA inflow velocity, cm/s*															
Systolic	$\textbf{88} \pm \textbf{24}$	74 ± 16	0.003	77 ± 8	85 ± 6	+	$\textbf{79} \pm \textbf{15}$	75 ± 17	0.68	87 ± 25	72 ± 15	0.04	$\textbf{103} \pm \textbf{29}$	$\textbf{73} \pm \textbf{19}$	0.002
Diastolic	72 ± 23	54 ± 16	0.004	59 ± 18	60 ± 6	†	69 ± 22	57 ± 18	0.24	70 ± 23	$\textbf{55} \pm \textbf{19}$	0.09	86 ± 27	47 ± 8	0.04

Naoum, Christopher, et al.

"Left atrial compression and the mechanism of exercise impairment in patients with a large hiatal hernia Journal of the American College of Cardiology 58.15 (2011): 1624-1634.

NYHA class and exercise capacity improved post-op

Figure 4 Change in Functional Class and Exercise Capacity After HH Repair

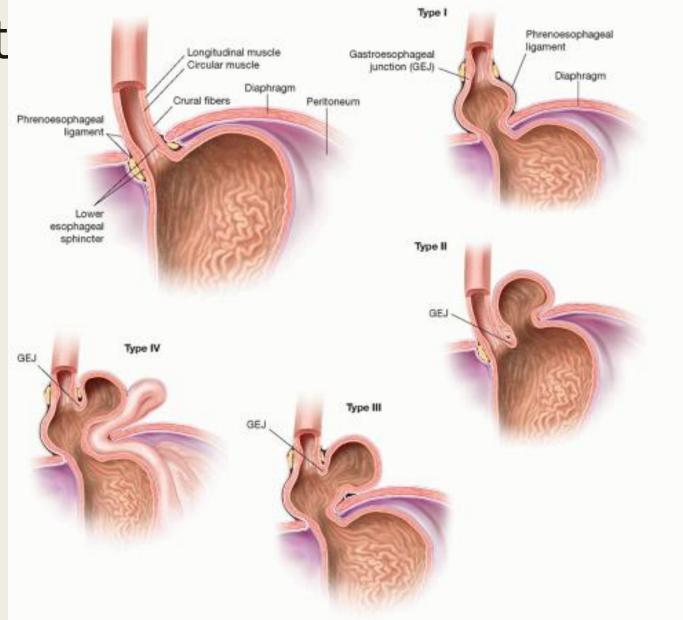
Change in New York Heart Association functional class (A) and mean exercise capacity (B) after hiatal hernia repair. Exercise capacity defined as metabolic equivalents (METS) achieved expressed as a percentage of age-predicted values. *p value for chi-square test for trend.

Naoum, Christopher, et al.

"Left atrial compression and the mechanism of exercise impairment in patients with a large hiatal hernia Journal of the American College of Cardiology 58.15 (2011): 1624-1634.

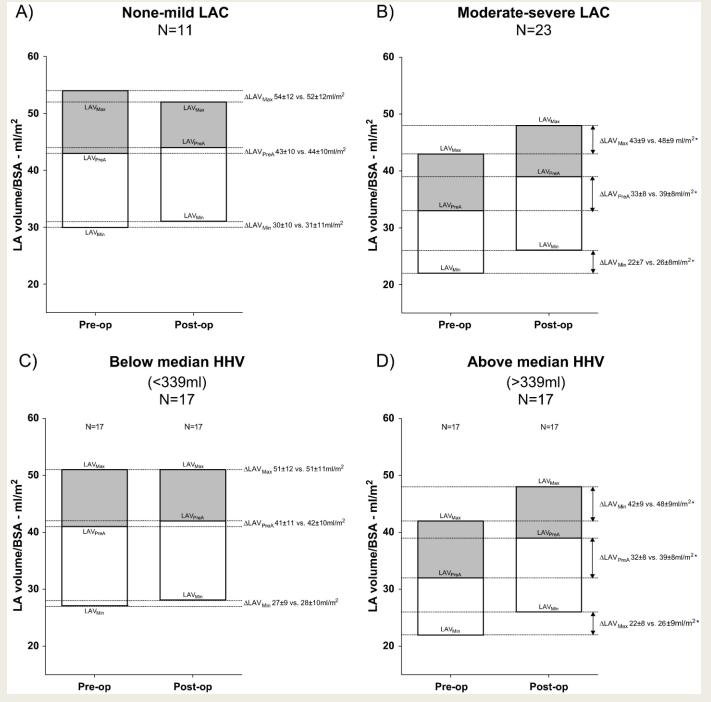
the only independent predictor of improved exercise capacity after HH repair was the change in LA diameter on

echo


Table 4Relationship Between Exercise Capacity Improvement Following
Hiatal Hernia Repair and Changes in Cardiorespiratory Parameters

0 million and a start and	Maan Ohanda	Univariate	Analysis*	Multivariate Analysis†			
Cardiorespiratory Parameter	Mean Change Post-Operation	R ²	p Value	Regression Coefficient	p Value		
Echocardiographic							
LA diameter, mm	11 ± 9	0.34	<0.001	10.3 (3.4)	0.006		
LA inflow velocities, cm/s							
Systolic	$-$ 14 \pm 24	0.12	0.06	—	_		
Diastolic	$-$ 17 \pm 26	0.03	0.45	—	—		
RVSP, mm Hg	2 ± 13	0.01	0.71	—	_		
LV ejection fraction	-1 ± 11	0.0004	0.92	—	_		
Cardiac CT							
LA volume, ml	9 ± 15	0.02	0.47	_	_		
IPV diameter, mm				_	_		
Right	1 ± 2	0.18	0.02	18.9 (11.0)	0.10		
Left	2 ± 2	0.08	0.15	_	_		
LV volumes, ml							
End-diastolic	7 ± 23	0.0005	0.91	_	_		
End-systolic	3 ± 13	0.01	0.64	_	_		

references Naoum, Christopher, et al. "Left atrial compression and the mechanism of exercise impairment in patients with a large hiatal hernia." *Journal of the American College of Cardiology* 58.15 (2011): 1624-1634.


- "Hiatal hernia squeezing the heart to flutter." The American journal of emergency medicine 32.4 (2014): 392-e1.
- Paroxysmal postprandial atrial fibrilation suppressed by laparoscopic repair of a giant paraesophageal hernia compressing the left atrium."
- Naoum, Christopher, et al. "Modulation of phasic left atrial function and left ventricular filling in patients with extrinsic left atrial compression by hiatal hernia." *International journal of cardiology* 176.3 (2014): 1176-1178.

there are 4 t

https://thoracickey.com/transthoracic-hiatal-hernia-repair/

decreased LA filling leads to exercise induced dyspnea

Naoum, Christopher, et al. "Modulation of phasic left atrial function and left ventricular filling in patients with extrinsic left atrial compression by hiatal hernia." *International journal of cardiology* 176.3 (2014): 1176-1178.

Table 1Baseline Characteristics and
Cardiac and Respiratory Function (N = 30)

Demographic and clinical characteristics

Age, yrs	70 ± 10
Female	23 (77)
Heart rate, beats/min	79 (70-85)
Systolic blood pressure, mm Hg	130 (130-135)
Body mass index, kg/m ²	30.9 (26.6-34.5)
Hiatal hernia size and classification	
Volume on computed tomography, ml	400 (248-596)
Percentage of intrathoracic stomach (intraoperative)	
30%-50%	2 (7)
50%-75%	21 (70)
75%-100%	7 (23)
Classification*	
Туре І	0 (0)
Туре II	0 (0)
Туре III	29 (97)
Туре IV	1(3)